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A moving fluid interface on a rough surface 
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When an interface between two fluids moves in contact with a solid boundary, 
the Navier-Stokes equations and the no-slip boundary condition provide an 
unsatisfactory theoretical model, because they predict an undefined velocity at 
the contact line and a non-integrable stress on the solid boundary. If the surface 
irregularities are included in the model, the flow on a length scale large compared 
with their size can be calculated, using a slip coefficient and treating the surface 
as smooth. 

A simple type of corrugated surface is examined, and the effective slip coeffi- 
cient calculated, for grooves of finite and infinite depth. The slip coefficient when 
the grooves are filled with one fluid and another fluid flows over them is also 
calculated. It is suggested that, when a fluid displaces another on a rough surface, 
the displaced fluid remains in the hollows on the surface, thus providing a partly 
fluid boundary for the displacing fluid and leading to a slip coefficient for the flow. 

Fluid contained between two vertical plates and rising between them provides 
a simple example of a flow for which the solution can be found with and without 
a slip coefficient. With slip present, the force on the plates is finite and its value is 
calculated. 

1. Introduction 
Recent papers by Huh & Scriven (1971) and by Dussan V. & Davis (1974) have 

drawn attention to the difficulties encountered in attempting a theoretical 
description of a moving contact line between two fluids and a solid boundary. 
Such moving contact lines are of common occurrence, the most familiar being the 
water-air-glass contact line in a tilted tumbler. It is generally believed that the 
water, as it moves to wet a further portion of the glass surface, does so by rolling 
and not by sliding. The experiments described by Dussan V. & Davis show that 
particles of fluid initially on the fluid-fluid interface are found later to be on the 
solid-fluid interface and vice versa. Thus a condition of adherence, which as they 
explain is not the same as a no-slip boundary condition, is not maintained. Once 
a fluid particle has reached the solid surface it may not move along it and hence 
the no-slip condition can be satisfied. However, this description of the motion 
leads to two unsatisfactory conclusions: the fluid velocity is undefined at the 
contact line and the stress on the solid boundary has a non-integrable singularity, 
leading to an infinite force. These shortcomings of the model have often been 
encountered; in particular, by Huh & Scriven (1971), who calculate a variety of 
flows at a moving contact line, the interface between the two fluids remaining 
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plane. The important contribution of Dussan V. & Davis was to show that the 
unsatisfactory nature of the model was not due to any approximations made in 
deducing particular flows, but was an inevitable consequence of using a con- 
tinuum model of the flow together with the no-slip boundary condition. 

There is, of course, no reason to suppose that a continuum model should give 
sensible results when distances of molecular dimensions are involved. A complete 
description of the motion at the contact line on a molecular scale would obviously 
be very difficult. Huh & Scriven suggest that, instead of examining this region 
in detail, its overall effect on the flow on a macroscopic length scale could be 
obtained by postulating a dynamic boundary condition, in which the relative 
velocity a t  a solid boundary is proportional to the velocity gradient there. The slip 
coefficient would be of the same order as the molecular length scale, but would 
have to be determined either experimentally or by consideration of the molecular 
processes involved at the contact line. Such a proposal would lead to a finite stress 
(or a t  least to an integrable one) and hence to a finite value for the force. Such a 
change in the usual no-slip boundary condition would in most circumstances be 
undetectable, since the additional term would only change the macroscopic flow 
by an amount proportional to the ratio of the molecular to the macroscopic length 
scales, except in special circumstances, of which the moving contact line is one. 
Then the stress would be inversely proportional to the molecular length scale 
near the contact line, leading to a force which could be large, but would be finite. 

In  the creeping-flow solutions without slip obtained by Huh & Scriven (1971), 
the solid boundary is assumed to be a geometrical plane. Irregularities of the 
surface on a molecular scale are one among many features which must be included 
in a full description of the flow near the contact line. Irregularities of solid 
surfaces, however, also occur on length scales much greater than the molecular 
scale. For example, a trace of a medium-ground steel surface reproduced by 
Hondros (1971) shows grooves about 2pm deep with a lateral spacing of 
about 8pm. The effect of such irregularities on the contact-line problem is dis- 
missed by Huh & Scriven, who say that the singularity in the hydrodynamic 
model would still be present when it is applied to contact-line movement on 
scales less than the length scales of roughness and heterogeneity. 

There are three length scales relevant to the problem: the macroscopic length 
scale, which may be the size of the fluid container and which is the appropriate 
length scale for the overall description of the flow; the microscopic scale, which 
measures the roughness of the surface; and the molecular length scale. The thesis 
of this paper is that, when the surface irregularities are included, a model, based 
on the Navier-Stokes equations, can be produced in which the difficulties hitherto 
encountered at the moving contact line are removed. The proposal is that (i) the 
contact line does not move relative to a solid boundary on the microscopic length 
scale and (ii) the apparent contact line, that is, the estimated position of the con- 
tact line on the macroscopic length scale, does move. The way in which it is sug- 
gested that the fluid moves is shown in figure 1, drawn on the microscopic length 
scale. Relative to the solid boundary 8, fluid Fl is moving to the right and is 
displacing fluid F2. The initial contact line passes through C,, and does not move. 
As Fl advances, the Fl F2 interface is drawn out, so that it becomes close to succes- 
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FIGURE 1. Sketch showing the suggested motion of the interface between two fluids Fl and 
F2 in contact with a solid boundary S. The motion is from left to right. C, is the initial 
position of the contact line, and C,, C, and C, are subsequent positions of the apparent 
contact line, observed from a distance large compared with the scale of the irregularities 
of the surface. 

sive peaks of the irregular solid surface. From a distance, the surface appea'rs 
smooth and the apparent contact lines occupy the successive positions C,, C,, . . . . 
Small amounts of F, are trapped in the crevices of the surface. The displacing 
fluid Fl thus moves not over a solid surface, but over a surface partly or wholly 
composed of the displaced fluid F,. The appropriate boundary condition to be 
applied on the macroscopic length scale is one which allows relative motion to 
occur between 3'' and S,  because of the intervening fluid F,, and the slip coefficient 
is of the same order as the spacing of the surface irregularities. There may, of 
course, be another molecular slip coefficient, to explain any motion of the initial 
contact line C,,. But the present proposal is that flow over rough surfaces can be 
adequately modelled by treating them as geometrically smooth and using a slip 
boundary condition. A somewhat similar proposal was made by Taylor (1971) 
with regard to the appropriate boundary condition for flow over a porous solid, 
although, in that case, there can be transport of fluid within the porous solid. 

One feature of the proposed model perhaps needs further explanation. The 
diagrams in figure 1 show narrow regions near the peaks of the surface, where a 
thin film of F2 separates Fl from S. The draining of a thin film between two rigid 
surfaces is known to involve large normal forces which, on a macroscopic length 
scale, prevent contact in a finite time. However, in normal circumstances, the 
width of the gap is rapidly reduced to a molecular size. On the scale of the diagram, 
therefore, it is reasonable to suppose that F! makes contact with part of S, 
whether or not there is a monolayer of F, remaining between Fl and S. 

The simplified model of the surface used in the analysis presented in this paper 
consists of a uniform, periodic sequence of corrugations with straight crests and 
troughs, and the flow is in a direction perpendicular to the corrugations. Bowden 
& Tabor (1974) state that only in exceptional circumstances is the local 
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slope of the surface inclined to the mean position of the surface a t  an angle greater 
than 5". Although the corrugations are shallow, solutions are obtained for both 
shallow and very deep corrugations, since the latter extreme case is amenable to 
more exact mathematical analysis. 

The rest of this paper contains an attempt to give quantitative support to 
the proposed model of the moving contact line. The flow of a fluid over a corru- 
gated surface is f i s t  considered, the grooves having finite or infinite depths. Next, 
the flow over corrugations containing a different fluid is considered. In  both cases 
an effective slip coefficient is obtained. The length scale is such that the Reynolds 
number based on the spacing of the grooves is small enough for the Stokes equa- 
tions to be used. Finally, the motion of fluid rising between two vertical plates is 
considered, and the force on the plates is calculated. 

2. Shear flow over a corrugated surface 
The plane surface of a solid, on the microscopic scale, exhibits surface irregu- 

larities in the form of randomly distributed peaks and hollows. The very 
simplified model of a rough surface considered here consists of a regular succession 
of parallel grooves. In  terms of Cartesian co-ordinates D and 9, parallel and normal 
to the mean position of the surface, the solid boundary has equation 

where 2dh and 27rh are the depth and spacing of the grooves, respectively. When 
d = 0, the surface is plane and when d = co, the surface consists of a row of 
parallel plates at 2 = 2n7rh (n integral) and 9 < 0. Flow parallel to the crests of 
such a surface was considered by Taylor (1971) and Richardson (1971) in their 
model for flow over a porous surface. 

On the macroscopic length scale, U and a are a typical velocity and a length, 
respectively. The flow near the surface is a uniform shear 

where u and u are the velocity components in the D and 9 directions, respectively. 
On the microscopic length scale, we can introduce non-dimensional co-ordinates 
and a stream function, defined by 

and the boundary conditions are 

9 = hq = hd { - 1 + cos (Blh)), (2 .1 )  

u = ug/a, 2, = 0, (2.2) 

D = hx, 9 = hy, ZL = ( U h / a ) a Y / a y ,  21 = - (Uhfa) aY/a~, (2.3) 

Y = aY/ay = 0 on y = q, (2 .4)  
Y .-&yz as y+m. (2-5) 

Re = Uh2/(av) ,  (2 .6)  

(2 .7 )  

If we suppose that the Reynolds number for this inner flow, 

is small enough for the Stokes equations to hold, the equation for ?I? is the 
biharmonic equation, 

The periodic nature of the boundary indicates a periodic stream function and the 
appropriate solution of (2.7) can be written in the form 

( a z / a X z  + a2py2p Y = 0. 

00 

Y = +y2+py+x+ X (bny+cn)e-nucosnx, (2 .8)  
n-1 
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where b,, c,, ,8 and x are coefficients to be found. The value of ,8 determines the 
effective slip coefficient, since the flow at large distances from the surface is 

- U(!2 +,8h)/a, (2.9) 

and this is the velocity which would be obtained for flow over the plane surface 
y = 0 if the boundary condition there were 

phaulag = u. (2.10) 

Thus ,8h is the effective slip coefficient for the corrugated surface. The next step 
is to determine its value as a function of d. 

If the boundary conditions (2.4) are applied to the stream function given by 
(2.8) and the resulting expressions expanded as Fourier series in x, two sets of 
equations for the determination of the unknown coefficients are obtained. The 
integrals occurring in the Fourier coefficients can be evaluated in terms of Bessel 
functions and the equations for b,, c,, ,8 and x are 

where 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.16;) 

a modified Bessel function. 
For small values of d, these equations can be solved by truncation to give suffi- 

ciently accurate results. For larger values of d, however, the method fails to give 
meaningful results with double-precision arithmetic. The reason for the failure is 
that, when n is large, there is a very great difference between the values of the 
exponential terms in (2.8) a t  the crests and troughs of the surface. The matrix 
becomes ill conditioned and an accurate solution depends on computation to a 
very high degree of accuracy. The results obtained by the numerical solution are 
shown in table 1, for a series of values of d. The roughness factor R of the surface 
is also shown. This is defined as the ratio of the surface area to its projection on 
the plane y = 0. The numerical results suggest that p is approaching a limiting 
value pw as d -+ 00, with - P.c d-3. If this suggestion is true, and if P, and P2 
are successive values of P corresponding to a successive values d, and d, of d, the 

(2.16) quantity 

should approach Pw as d increases. The values of ,8* are given in the last column 

P* = ( P 2 4  - P,di ) / (d  - 4) 
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d 

0.2 
0.4 
0.6 
0.8 
1 .o 
1.2 
1.4 
1-6 
1.8 

R 
1.01 
1.04 
1.09 
1.12 
1.22 
1.30 
1-40 
1.52 
1.60 

P 
0.161 
0.256 
0.310 
0.342 
0.364 
0.380 
0.39 
0.40 
0.41 

TABLE 1. Single-fluid slip flow 

P* 

0.49 
0.54 
0.55 
0.55 
0.55 
0.55 
0.55 
0.56 

of table I, and the hypothesis is verified, with Prn 2: 0.55. For small values of d, 
the numerical results suggest that 

p = d( I - d + Oa7d3), (2.17) 

approximately. For values of d greater than 1.0, the slip coefficient is only weakly 
dependent on the depth of the grooves. This is because, when the grooves are 
sufficiently deep, the fluid in them is almost stagnant and increasing the depth 
further does not change the flow above the surface. 

Since the calculation of p could be performed for only a limited range of values 
of d,  and since the details of the flow could be accurately determined for only an 
even smaller range, an alternative method was used for the limiting case d = co, 
when the surface consists of a row of semi-infinite parallel plates. The periodic 
nature of the flow enables the solution to be found in a single strip. With the 
origin for x displaced to a position midway between two plates, the solution of the 
biharmonic equation is required in the strip 0 < x < n-, the conditions on the 

(2.18) 
central plane being 

On the plate, the conditions are 

aYpx = a3Y/ax3 = 0 on x = 0. 

Y = aYpx = 0 on x = n-, y < 0, (2.19) 

and, because the stream function in y > 0 is an even function of n- - x, we must 
have (2.20) a Y p X  = a3Y/ax3 = 0 on x = n-, y > 0. 

We also require that Y - fry2 as y+m. (2.21) 

If we define c(y) and d ( y )  by 

Y = c(y) on x = n-, y > 0, a3Y/ax3 = d(y )  on x = n-, y < 0, (2.22) 

and take a Pourier transform in y, defined by 

(2.23) 
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the problem can be solved by the Wiener-Hopf technique. The appropriate form 
of T can be written as 

T = A(s)  coshsx+B(s)xsinhsx, (2 .24)  

and, if C+(s) = T(n, s), DJs) = M ( n ,  s)/ax3, (2 .25)  

application of the boundary conditions and elimination of A and B yield the 

(2.26) equation - n-ls2 sinhZsnC+ = ( 4 m - 1  (sinh 2sn + 2877) D-. 

Let a,, m = 1 , 2 ,  ..., be the roots of 

sin 2 g n  + 2 a n  = 0 

in the first quadrant. Then we can write 

(2 .27)  

(4sn)-l (sinh 2sn + 2877) = K+(s) K-(s), (2 .28 )  

where 
m = l  

and K-(s) = K+( -8). (2 .30)  

The coefficient a is arbitrary and 3, is the complex conjugate of a,. The values 
of vm for large m are given by 

In(4m-i)n- i 
g =%-I- + - In (4m - 1 )  n, 
ni ~ ~ ( 4 m - l )  2n 

(2.31) 

and accurate values of the roots can be found by Newton iteration, with the 
values given by (2.31) as their initial estimates. The factorized form of (2 .26)  is 

(2 .32)  

where M ( s )  is an integral function, and where we have used 

sinh sn- I?( I + i s )  r( 1 - is) = sn-. (2 .33)  

To determine M(s) ,  the asymptotic form of K+(s) for large s is needed. We can 
make use of the asymptotic form of a, given by (2 .31)  and define 

L+(s) = fi [(l+- s 
m-1 z(m - $) 

= {r ($)/I? ( 2 - is))2 exp { - 2is$( g)} 

and LJs) = L+( -s). 

It is then easy to show that, as S+W, 

K+/L+ w k exp {s(a - a’)}, 

where k is a constant and a’ is defined by 

(2.34) 

(2 .35)  

(2.36) 

(2 .37)  
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Hence, as s+ 00 in the upper half-plane, the coefficient of C+(s) in (2.32) has the 
asymptotic value 

( - is)-* s4 exp [ - s {a - a’ - 2i$( i)}]. (2.38) 

To obtain an algebraic behaviour at infinity, we choose 

a = a’ + 2i$($). (2.39) 

If c(y), the value of Y on x = n, is proportional to y3 as y+O, C+ N s-* and 
M ( s )  = O(s). Also, as s-+ 0, C+ N - i r 3 ,  and so 

M(8) = ins (2.40) 

is an acceptable solution. It is easily found that no other possibility is consistent 
with the stated conditions and keeps the velocity a t  the edge of the plate finite. 

c+(s) = - is-3pyi - ~ s ) ) ~ K + ( s )  (2.41) 
Hence 

and c(y) N 3 y 2 + ( i a - 2 y ) y  as y+w. (2.42) 

The slip coefficient is ph, as before, with 

where y is Euler’s constant, and a numerical computation gives the value 

/3 = 0.5569, (2.44) 

which is in agreement with the asymptotic value deduced from the solutions for 
corrugations of finite depths 

The functions A and B in the definition of the stream function (2.24) can now 
be found and the stream function calculated. In  y < 0, a series of eddies is formed, 
of rapidly decreasing strength as y decreases. The flow between the plates away 
from the vicinity of the shear flow in y > 0 is similar to that obtained by Moffatt 
(1964) for the flow induced between two infinite plates by rotating a cylinder 
between them. Some streamlines in the region y < 0 are shown in figure 2. The 
most significant feature is the small distance the streamline through the edges 
of the plates penetrates into the region y < 0, the maximum depth of this stream- 
line being only 6 yo of the distance between the plates. The low value of the 
depression of this streamline explains why the slip coefficient is not very sensitive 
to changes in the depth of the grooves. The largest value of d for which numerical 
solutions were obtained corresponds to a depthlwidth ratio of only 0.57, so that 
even shallow grooves produce an effective slip coeBcient when fluid flows over 
them. 

The results of Richardson (1971) for flow parallel to the crests of a corrugated 
surface gave values of the slip coefficient comparable to those obtained here. 
For a row of plates, Richardson obtained p = &ln 2 = 0.347. 

The results so far obtained are for a very simple type of rough surface. 
Generally, the surface will contain a random distribution of irregularities. For 
a surface consisting of shallow grooves, the results suggest that a slip coefficient 
proportional to some mean value d, of the depths of the surface irregularities can 
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FIGURE 2. Streamlines of the flow between the sides of a very deep groove. 

be defined. For deep grooves, on the other hand, the slip coefficient is proportional 
to some mean value h, of the spacing of the grooves. The boundary condition to 
be applied on a macroscopic scale for flow over a rough surface which is moving 
with speed U in its own plane is 

c, a+y = u - u, (2.45) 

where y is measured from the surface into the fluid and where the slip coefficient c, 

(2.46) 
is given by 

for shallow grooves (dfh < 0.5) and by 

c, = id,( 1 - dfh) 

C,  = Phm/2n (2.47) 

for deep grooves (d/h > l), a suitable average value for 
The shear flow past a wavy boundary has previously been calculated by 

Richardson (1973), in his discussion of the origin of the no-slip boundary condi- 
tion. Since the use made of the calculation by Richardson is quite different from 
that of the present paper, it  is worth noting the distinct aims of the two authors. 
Both show that, at large distances from the boundary, the velocity profile has 

(2.48) 
the form 

u = U(y + c,)fa. 

Richardson calculates cs both when there is no slip a t  the boundary and when slip 
is allowed there. He deduces that, whatever boundary condition is applied on the 
microscopic scale, the macroscopic flow corresponds to the presence of a slip 
coefficient c, which is negligible on the macroscopic scale. Hence, to leading order, 

being about 0-4. 
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there is no slip on the macroscopic scale. The argument presented here starts with 
the assumption of no slip on the microscopic scale. The effective slip coefficient 
which is then calculated enables an approximate calculation to be made for the 
flow above the crests of the corrugations on the boundary. The approximation 
consists of replacing the actual boundary by a fictional plane through the crests 
and applying a slip boundary condition there, with slip coefficient c, and velocity 
profile (2.48). As in Richardson’s treatment, there is no slip on the macroscopic 
scale, to leading order. It is not, of course, suggested that the approximation is 
formally correct, since the scale on which the slip coefficient is important is 
identical with the scale of the corrugations of the boundary. But some approxi- 
mation must be made if the problem of the motion of two fluids past a rough 
boundary is to be made tractable and the small distortion of the streamlines above 
the crests of the corrugations indicates that the replacement of the real boundary 
by the fictional plane through the crests may be acceptable. 

The method used by Richardson (1973) to find the flow over a wavy boundary 
was to map the region above one wavelength of the boundary onto the exterior 
of a circle. For the family of boundary shapes he uses, a closed-form solution for 
the slip coefficient is obtained. Provided the mapping is sufficiently simple, such 
closed-form values could be obtained for other boundary shapes. Although the 
complex-variable method of Richardson may be superior to that used in this 
section, it does not seem likely that it is suitable for the two-fluid problems of the 
following section, whereas the methods described here are readily adaptable. 

A possible objection to the proposed fictional plane replacing the actual corru- 
gated surface is that the slip coefficient depends on the position of the plane 
relative to the crests, and could even be negative. This would, of course, merely 
reflect the reverse flow present in the trough. If, however, the plane is taken a t  
any level below the crests, the slip boundary condition would be appropriate only 
on the portions of the plane which are above the actual surface, and a different 
boundary condition would have to be used on the remainder to allow for the 
projection of the crests into the region above the plane. It is only when the plane 
passes through the crests that the actual flow and the fictional flow are in close 
approximation throughout the region above the plane. There is no attempt to 
give even an approximate description of the actual flow below the level of the 
crests. 

3. Two-fluid flow 
The previous section dealt with the situation to the left of the initial position C,, 

of the contact line in figure 1, where a single fluid moves over a corrugated surface. 
To the right of this position, the displacing fluid is moving over a surface with its 
irregularities filled with the displaced fluid, which has been trapped in the hollows 
on the surface when the interface moves past them. Analysis of the motion near 
the moving interface is desirable but very difficult, and the only feasible case to 
consider seems to be the situation when the interface has moved some distance 
downstream, and the flow can again be regarded as steady. Even so, the two-fluid 
problem remains difficult, and we first consider the parallel-plate model for the 
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- 
F P %lax 

0.01 0.0060 3.1 
0.1 0.059 3.7 
1.0 0.605 10.9 

10 3.35 16-7 
100 27.9 12.9 

TABLE 2. Two-fluid flow: deep grooves 

surface, which is the limiting case of very deep regular grooves. In  addition, we 
suppose that the interface between the two fluids lies along the plane y = 0, which 
is the plane containing the edges of the plates. In  the single-fluid solution for flow 
past such a surface, it  was found that the streamline through the edges of the 
plates remained close to the plane y = 0. The proposed model for the two-fluid 
flow treats this streamline as the dividing streamline between the two fluids and 
forces it to lie exactly in the plane y = 0. This can only be done by the imposition 
of a normal stress across the interface. At a curved fluid interface, surface tension 
provides such a normal stress, and if it is sufficiently strong, the normal stress 
balance can be achieved with a negligibly small curvature of the surface. The 
surface tension at a fluid interface was also invoked by Huh & Scriven (1971) to 
justify their assumption that the fluid interfaces they were considering remained 
plane. 

As in $2, we can consider the flow in a single strip only, 0 < x < rr. We use 
suffixes 1 and 2 to denote quantities in the two regions y > 0 and y < 0,  respec- 
tively, and p, and p2 are the viscosities of the two fluids. 

In  the upper fluid, the stream function satisfies the conditions 

I aYl/ax = a3Y1/ax3 = 0 on x = 0, T,  

Y,=O on y=O,  

Y,-+y2 as y+m, 

and the appropriate solution of the biharmonic equation 
m 
I 

Y, = i y2  + /3y + a, y e-nu cos nx. 
n=l  

For y < 0, the boundary conditions are 

I 
is 

aY,/ax = a3Y,/ax3 = 0 on x = 0, 

Yp,=aY,/ax= 0 on X = T ,  

Y,+O as y+-m, 

and we can write the solution as 

(3.3) 

m 
Y, = 2 e'm*(x sin umx cos umrr - rr sin umrr cos crmx) b, 

m=l +complex conjugate, (3.4) 
where crm are the roots of (2.27). 
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The interfacial boundary conditions are continuity of tangential velocity and 
tangential stress a t  y = 0, and, in addition, we must have Y2 = 0 there. When 
these conditions are applied, and when a Fourier analysis of Y, and its derivatives 
is made, the following sets of equations for the unknown coefficients a, and b, 

are obtained: m 

2 &(g&-n2)-2bm+c.c. = 0, n 2 0, (3.5) 
m = l  

n > O , ]  m 
2 #",(aL - n2)-2 b, + C.C. = 

m = l  n = 0, 

where jZ = pl/p2 is the viscosity ratio. The coefficients can be determined by 
truncation of these infinite sets of equations and the values of /3 for various values 
of ji are shown in table 2. 

The value of /3 for ji = 1 should be compared with the value 0.56 obtained in $2. 
The difference between these values is due to the displacement of the streamline 
through the plate edges, which is now forced to lie in the plane y = 0. Since the 
difference is only 10 %, the results obtained for this simple model may be used 
with some confidence, a t  least for fluids with comparable viscosity, even when 
surface tension is absent. An empirical formula constructed from the values of /3 
given in table 2 is /3 = 0-6ji( 1 + 0*17p)/( 1 + 0-387i). 

The low values of /3 when the viscosity ratio is small are to be expected, since the 
more viscous lower fluid produces a large tangential stress on the upper fluid, 
reducing the amount of slip. These results suggest that, when a fluid of viscosityp, 
is displacing a fluid of viscosity p, over a rough surface, the appropriate slip 
coefficient is 

(3.9) 
1.18p,(p2+ 0 . 1 7 , ~ ~ )  

CS, 
P ~ ( P ~  + 0 . 3 8 ~ ~ )  

c12 = 

where cs was defined in (2.47) to be the slip coefficient when a fluid is moving over 
a deeply grooved surface whose crevices are clear of the presence of another fluid. 

The pressure in the two fluids can be calculated from the values of Y1 and Y,. 
Ifp, andp, are the respective values of the pressure at the interface y = 0, we have 

m 

n = l  
p1 = ( 2p1 U/a)  a, n sin nx, (3.10) 

(3.11) 

The curvature of the surface K / h  required to balance the normal stress difference 
across the interface is given by 

1 b, urn sin urn x cos urn n + C.C. . 

T K p  = pl -p2 + 2p2 av2/ay - 2p1 aV,/ay. (3.12) 

The proposed model, which has assumed that the surface remains plane, is self- 
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consistent provided the curvature calculated from (3.10)-(3.12) is negligibly 
sma,ll. The value of K is 

K = (P1 +p,) ( U h l W  @-4, (3.13) 

m m 

sin nx  
n = l  m = l  

where Z(x) = 4( 1 +p)-1 [( - l)m {c~kji-~ + ncr&(cr& - na),) 

x (a&-n2)-2b,+~.~.]. (3.14) 

Values of j? were calculated at a number of values of x for each value of p. The 
largest values i?,,, are given in table 2. Over the whole viscosity range tabulated, 
the model will be consistent provided that 

(pI+p2) (uh/Ta) < 10-l. (3.15) 

This condition is not a stringent one. For example, if the two fluids are water and 
air, and we take U = 10-2ms-1, a = 10-2m and h = 10-5m, 

(pl + p,) (Uh/Ta)  M 0.3 x lo-*, (3.16) 

and the curvature of the surface produced by the unequal stresses on either side 
is minute. 

We next consider the two-fluid flow over a surface with shallow grooves. In  
non-dimensional form, the equation of the surface is taken to be 

y = d( - 1 + COB x), (3.17) 

as in 3 2, and we continue to assume that the fluid interface lies in the plane y = 0. 
The stream function for the flow in y > 0 is taken to be 

m 

Y+ = By2 + @y + un y e-,y cos nx, (3.18) 
n=l 

and in y < 0 we may write 

m 

Y- = QqP + + ,8y + (b ,  y e-"y + c, y eng + d, sinh ny)  cos nx. (3.19) 
n-1 

In  choosing these expressions for the stream functions, the conditions 

Y+=Y-=O on y = O  (3.20) 

have been satisfied, and so have the conditions of continuity of mean velocity 
and mean tangential stress a t  the interface. When these last two conditions are 
applied at each value of x,  we obtain the equations 

a, = b, -?- c, + nd,, pa, = b, - c,, (3.21), (3.22) 

so that the coefficients d, can be eliminated, and Y- can be written in terms of 
the two sets of coefficients b, and c,. These coefficients can be determined from 
the boundary conditions 

(3.23) 

on the boundary (3.17). As in 3 2, after the boundary value of y has been substi- 
tuted, a Fourier expansion yields two sets of equations for b, and c,, with coeffi- 
cients which can be expressed in terms of Bessel functions. 
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d = 0.2 F d = 0.1 

0.01 0.250 0.248 
0.1 0.249 0.247 
1.0 0.244 0.237 

10 0.206 0.192 
100 0.109 0.094 

TABLE 3. Values of /3/pd for shallow grooves 

The numerical solution, even for small values of d, did not appear to converge 
as the number of equations was increased. The probable reason for this failure is 
the presence of cusps in the region occupied by the second fluid, where the 
boundary and the fluid interface meet. To avoid this difficulty, the solution was 
found when the position of the boundary was not given by (3.17) but by 

y = d(-1--6+cosx), (3.24) 

where 6 took the values 0.4, 0.3, 0.2 and 0.1. The values of /3 were found for these 
values of 6 and the value for 6 = 0 found by extrapolation. There was no difficulty 
in determining the solution for non-zero 6, the largest number of equations needed 
being 30. Except when ji was large, the values of /3 were found to be almost linear 
functions of 6, so that the extrapolated values could be determined quite 
accurately. 

Some results are given in table 3 and they can be summarized as follows. For 
shallow grooves with slopes of a few degrees, and with depths d,, the slip 
coefficient is given by 

C, = O.ljid,, j2 = 10, I (3.25) 

0-125,iidm, j? < 1 

1 1 0.05jidm, ,ii = 100, 

where ji is the ratio of the viscosity of the fluid above the surface to that of the 
fluid filling the grooves. 

4. Fluid rising between two parallel plates 
Now that some justification for the use of a slip boundary condition a t  a rough 

surface has been presented, it is possible to go on to examine the effect of applying 
such a condition to a flow involving a moving interface between two fluids in the 
presence of a solid boundary. Even for low Reynolds number flows and with the 
no-slip boundary condition, such two-fluid flows are difficult to describe theo- 
retically. It is possible to find local similarity solutions near the contact line, if 
the fluid interface is assumed to remain plane. In  terms of polar co-ordinates with 
origin at the contact line, two-dimensional flows have a stream function of the 
form 

and Huh & Scriven (1971) examine a variety of such flows. Earlier, Moffatt (1964) 

Y? = rf(O), (4.1) 
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had considered a special case, when the region on one side of the fluid interface 
was void. As Huh & Scriven point out, a slip boundary condition prevents the 
use of similarity solutions of the form (4 .1)  in isolation, because there is a length 
scale present in the boundary condition. Solutions consisting of expansions in 
ascending or descending powers of r are possible, but a more satisfactory pro- 
cedure is to use a Mellin transform of Y for motion with a plane solid boundary 
and a plane fluid interface. Such solutions would have to be matched to outer 
solutions, away from the contact line, to obtain a description of a complete 
problem. 

There is one configuration in which i t  is possible to find the solution, both 
globally and in the vicinity of the contact line. Suppose fluid is contained between 
two vertical plates a distance 2a apart and is rising with speed U relative to the 
plates. I f  the top surface of the fluid is assumed to be plane, with a contact angle 
of &r a t  the plates, and if the Reynolds number is small, the motion of the fluid 
can be calculated, provided the fluid above the interface is of sufficiently low 
viscosity for its dynamics to be neglected. The solution of this problem has been 
presented by Bhattacharji & Savic (1965) and by Bataille (1966). Their solutions 
include a non-integrable stress at the contact line, as do those presented by Huh 
& Scriven (1971). The contact angle must be equal to &r for the solution to retain 
its simple form; there is no immediate extension to other contact angles. 

The same configuration can be solved when the slip boundary condition is 
applied, and in that case there is a finite force on the vertical plates. If x and y are 
non-dimensional Cartesian co-ordinates, with x measured horizontally and 
y vertically downwards from a point in the free surface midway between the 
plates, the region occupied by the fluid is 1x1 < I, y > 0. Relative to these 
co-ordinates, the plates have a velocity U in the + y direction and the interface 
is at rest. The Reynolds number Re is 2Uapl /p l ,  where p1 is the viscosity and 
p1 the density of the fluid, and if Re is sufficiently small, the stream function UuY 
for the flow satisfies the biharmonic equation and the following conditions: 

(4 .2)  I Y = a2Y/ay2= 0 on y =  0, 
Y = O  on x = + _ l ,  

aY/ax -I: h a2Y/ax2 = - 1 on x = -t 1. 

The last condition is the slip boundary condition (2.45),  with h = el&, from 
(3.9) or (3 .25 ) .  

The solution of these equations is 

(4.3) 
sin sy(x cosh sx sinh s - sinh sx cosh s) 

s(sinh 2s - 2s + 4hs sinh2 s) 
Y = - -  as. 

n o  41 
As y -+ a, the asymptotic value of the stream function is 

Y N g(x - x3) (1 + 34-1, (4.4) 

and the slip is unimportant away from the free surface, provided h < 1. To 
examine the nature of the flow near the intersection of the free surface and the 
plates, it is convenient to change to new variables, defined by 

x = - 1 +A<, y = hy, s = a/h, (4.5) 
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and the leading term in the stream function (4.3) is 

This integral can be expressed in terms of the exponential integral to give 

Y = - 2hC7r-l [tan-l(y/f;) + Im{exp {&f; + iy)) El{&([ +iq)))]. (4.7) 

In  terms of polar co-ordinates centred at the contact line and defined-by 

l =  pcosq5, y = psinq5, (4.8) 
we have 

O0 (*PIn sin nq5 + (-7 +In (2/P)) c 1 n! 
YE- 

and the asymptotic expansion for large p is 

The leading term of this last result is the solution near the contact line when there 
is no slip. Asp+ 0, the stream function with slip is shown by (4.9) to be O(p2 lnp-l) 
instead of O(p), and it is this reduction in the size of Y near the contact line which 
makes the force on the plate finite. 

The vertical component of the force on the plates can be calculated. The force 
per unit width on a length Z of the plate x = - 1 (measured from the free surface) 
is given by 

3 = J rp l  U( a2Y/ax2),=_, dy 

ds. 
- 8p; U j'; sinh2 s{ 1 - cos (sZ/a)) 

s (sinh 2s - 29 + 4hs sinh2 s) 
(4.11) 

For large values of the length of the plate relative to the gap between the plates, 
and for small values of the slip coefficient, a combination of asymptotic analysis 
and computation shows that (4.11) can be written as 

(a/c12) - 2.178 + O(a2/Z2) + O(e,,/a)], (4.12) 

and it is clear that, to make this force finite, a non-zero value of the slip coefficient 
is required. 

Surface tension must be present to ensure that the free surface remains 
essentially plane. The restriction on the size of the surface tension is more 
stringent than in the previous use of this condition, because of the increased 
length scale over which it is to hold, and we must have 

(p1 +Pz) UIT e 1 
for the model to be valid. 

(4.13) 



A moving fluid interface on a rough surface 817 

5. Summary 
It has been shown that, when an interface between two fluids moves in contact 

with a solid boundary, the continuum equations can be used to provide a con- 
sistent model of the flow, provided the surface irregularities are included. The 
effect of such irregularities is equivalent to the introduction of a slip coefficient, 
proportional to their depth if shallow and to their spacing if deep. On the basis 
of this model, a particular flow has been investigated and the force on the solid 
boundary has been shown to be finite, whereas the solution with no slip involves 
an infinite force. 

The most serious gap in the argument is that it has not been possible to produce 
evidence in support of the picture, sketched in figure 1, of the moving position 
and shape of the interface. However, the most promising direction for further 
study would seem to be to produce estimates of the forces on solid boundaries 
when moving contact lines are present, as has been done for the especially simple 
case discussed in Q 4. Comparison with experiment might then be able to decide 
between slip coefficients on the microscopic scale of the surface irregularities and 
on the molecular scale. 
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